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Thinking about Knowledge

1 FEk O FEFE

(1) AL HET, FIT OV T ORI

(2)  How %43

(3)  What %05

(FTIFHEM A>T D ), TRt o L v A #m LT 5 )

[ZOFITFIREDHFT, EFRSNELSF-TVND

[BRR DA F DM 2 9k LTV D BEER D E > TV 5 |
What B D H15% 1 T AnE CRBL T & 5 A5, (propositional knowledge) T& %,

2 i REI) 7 R

Sitp (THBHZ L) ZH->TW5 (Sknows that p.).,
SORFIZIAMTHY | plImBEELIEL T\ D,

TiE, T L1372 on, IREHAOEREL TOWLIAET, ZONFIL TEH] EMEENTE T,
MEITEIMAO TN TH D, FFE (fac) LIFERLIMETHDH, mdlIEE, Aok, %iE, &
Y ZOMOMENIERE (propositional attitudes) DX TH 5,

3 53T

MM EER O T & 1%, MENHRE ERT DL, OF 0, mENERRO MBS 2 5o
IZT52LTho,
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The JTB Analysis of Knowledge
JTB
S knows that p iff (1) p is true, (2) S believes that p, and (3) S is justified in believing p.
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2 Condition (2): belief requirement
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3 Condition (3): justification requirement
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A belief based on good evidence, or held for a good reason
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The Gettier Problem
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(1) Brgoighl : 2—2 Uy N, £465m. MERim, F28%

() /NP TWE 2 ) BWRECLP T A B 572725 9 7 Tl REEN S 2 BN 20 DD,
HAIZ N DM B T125 5

(F) BREDP LD T, EO XD ICERBEIZER, AR, BRI, FHEMR L T <o)
W 2B~ J

O DR AT B, Bra RO OBSRIE, BFERY, B, R, SR, IRk & v
STEAT TR END, BOMBNATFIZNE > TEBD b OWE 2 LN SHMAT 5, il H o
<YOHFTZ EiE, EHBEDIANW - HAREONOHERICERIN TS ZEERLTEBY, £
DEFR LN RIEREZ O ENAT L DN D,

*J JL1NF DX A : Bourbaki’s Reforming Mathematics
Bourbaki members all believed that they had to completely rethink mathematics. As explained by Dieudonné
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“if the mathematics set forth by Bourbaki no longer correspond to the trends of the period, the work is useless
and has to be redone, this is why we decided that all Bourbaki collaborators would retire at age 50.” Bourbaki
wanted to create a work that would be an essential tool for all mathematicians. Their aim was to create
something logically ordered, starting with a strong foundation and building continuously on it. The foundation
that they chose was set theory which would be the first book in a series of 6 that they named “éléments de
mathématique”(with the 's' dropped from mathématiques to represent their underlying belief in the unity of
mathematics). Bourbaki felt that the old mathematical divisions were no longer valid comparing them to
ancient zoological divisions. The ancient zoologist would classify animals based on some basic superficial
similarities such as “all these animals live in the ocean”. Eventually they realized that more complexity was
required to classify these animals. Past mathematicians had apparently made similar mistakes : “the order in
which we (Bourbaki) arranged our subjects was decided according to a logical and rational scheme. If that
does not agree with what was done previously, well, it means that what was done previously has to be thrown
overboard.” After many heated discussions, Bourbaki eventually settled on the topics for “éléments de
mathématique” they would be, in order:

| Set theory

Il Algebra

111 Topology

IV Functions of one real variable

V Topological vector spaces

VI Integration
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Entropy in thermodynamics and information theory

There are close parallels between the mathematical expressions for the thermodynamic entropy, usually
denoted by S, of a physical system in the statistical thermodynamics established by Ludwig Boltzmann and J.
Willard Gibbs in the 1870s; and the information-theoretic entropy, usually expressed as H, of Claude Shannon
and Ralph Hartley developed in the 1940s. Shannon, although not initially aware of this similarity,
commented in it upon publicizing information theory in A Mathematical Theory of Communication.

Equivalence of form of the defining expressions
Discrete case
Boltzmann's tombstone, featuring his equation S = k log W

The defining expression for entropy in the theory of statistical mechanics established by Ludwig Boltzmann
and J. Willard Gibbs in the 1870s, is of the form:

S = —kz pilog p,
where p; is the probability of the microstate i taken from an equilibrium ensemble.

The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is
of the form:
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H=-> plogp,
where p; is the probability of the message m; taken from the message space M.

If all the microstates are equiprobable (a microcanonical ensemble), the statistical thermodynamic entropy
reduces to the form on Boltzmann's tombstone,

S =klogW

where W is the number of microstates.

If all the messages are equiprobable, the information entropy reduces to the Hartley entropy
H=log|M |

where | M | is the cardinality of the message space M.

The logarithm in the thermodynamic definition is the natural logarithm. It can be shown that the Gibbs
entropy formula, with the natural logarithm, reproduces all of the properties of the macroscopic classical
thermodynamics of Clausius. (See article: Entropy (statistical views)).

The logarithm can also be taken to the natural base in the case of information entropy. This is equivalent to
choosing to measure information in nats instead of the usual bits. In practice, information entropy is almost
always calculated using base 2 logarithms, but this distinction amounts to nothing other than a change in units.
One nat is about 1.44 bits.

The presence of Boltzmann's constant k in the thermodynamic definitions is a historical accident, reflecting
the conventional units of temperature. It is there to make sure that the statistical definition of thermodynamic
entropy matches the classical entropy of Clausius, thermodynamically conjugate to temperature. For a simple
compressible system that can only perform volume work, the first law of thermodynamics becomes

dE = pdV +TdS

But one can equally well write this equation in terms of what physicists and chemists sometimes call the

'reduced' or dimensionless entropy, ¢ = S/k, so that

dE = pdV +kTdo

Just as S is conjugate to T, so ¢ is conjugate to KT (the energy that is characteristic of T on a molecular scale).
Continuous case

The most obvious extension of the Shannon entropy is the differential entropy,

H[f]=- f (x)log f (x)dx
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But it turns out that this is not in general a good measure of uncertainty or information. For example, the
differential entropy can be negative; also it is not invariant under continuous co-ordinate transformations.

More useful for the continuous case is the relative entropy of a distribution, defined as the Kullback-Leibler
divergence from the distribution to a reference measure m(x),

D (00 lIm(0) = [ 10otog

(or sometimes the negative of this).

The relative entropy carries over directly from discrete to continuous distributions, and is invariant under
co-ordinate reparametrizations. For an application of relative entropy in a quantum information theory setting.

(Brief history of information)

In less than two decades of the mid-twentieth century, the word information was transformed from a synonym
for knowledge into a mathematical, physical, and biological quantity that can be measured and studied
scientifically.

In 1939, Leo Szilard connected an increase in thermodynamic (Boltzmann) entropy with any increase in
information that results from a measurement, solving the problem of "Maxwell's Demon," the thought
experiment suggested by James Clerk Maxwell, in which a reduction in entropy is possible when an

intelligent being interacts with a thermodynamic system..

In the early 1940s, digital computers were invented, by Alan Turing, Claude Shannon, John von Neumann,
and others, that could run a stored program to manipulate stored data.

Then in the late 1940s, the problem of communicating digital data signals in the presence of noise was first
explored by Shannon, who developed the modern mathematical theory of the communication of
information. Norbert Wiener wrote in his 1948 famous book Cybernetics that "information is the negative of

the quantity usually defined as entropy,™ and in 1949 Leon Brillouin coined the term "negentropy.”

Finally, in the early 1950s, inheritable characteristics were shown by Francis Crick, James Watson, and

George Gamow to be transmitted from generation to generation in a digital code.


http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://en.wikipedia.org/wiki/Quantum_statistical_mechanics
http://www.informationphilosopher.com/introduction/information/
http://www.informationphilosopher.com/knowledge/
http://www.informationphilosopher.com/solutions/scientists/szilard/
http://www.informationphilosopher.com/solutions/scientists/boltzmann/
http://www.informationphilosopher.com/problems/measurement/
http://www.informationphilosopher.com/solutions/experiments/maxwell/#demon
http://www.informationphilosopher.com/solutions/scientists/maxwell/#demon
http://www.informationphilosopher.com/solutions/scientists/shannon/
http://www.informationphilosopher.com/solutions/scientists/neumann/
http://www.informationphilosopher.com/freedom/noise.html
http://www.informationphilosopher.com/solutions/scientists/wiener/
http://www.informationphilosopher.com/solutions/scientists/brillouin/

Thermodynamics Statistical Mechanics
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Thomson’s lamp

Thomson’s argument is roughly as follows: suppose there is a lamp which has a switch that, when pressed,
turns the lamp on if it was previously off and off if it was previously on. Suppose, then, starting with the lamp
off, that | press the switch an infinite number of times, pressing it once after a minute, again after a
half-minute, again after a quarter-minute, and so on ad infinitum. But then, after two minutes have passed, is
the lamp on or off? Clearly it must be either on or off. But it cannot be on, because | never once turned it on
without subsequently turning it back off. And it cannot be off, because I never once turned it off without
subsequently turning it back on. So it can be neither on nor off. But if it must be either on or off and at the
same time neither on nor off, then we have a contradiction. And so the supertask cannot have been performed.
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The above is the argument Thomson gave and shows that the supertask is logically impossible. Let’s look at
the Thomson lamp scenario more closely. There is a lamp with a switch, taking the lamp from off to on and
vice versa. For n even, the lamp is on; for n odd, the lamp is off. What state is the lamp in at 1, that is, after
two minutes? The difficulty is that the state of the lamp does not converge to a single value as the time tends
to 1. Rather, it alternates between two states faster and faster. So there is no limiting state of affairs which the
lamp approaches as 1 draws nearer. It is problematic, therefore, to read off from our description what state the
lamp will be in at 1.

Suppose, in describing the case, we stipulate:

L-1
The lamp cannot be on unless it is directly caused to be on by someone toggling the switch on, or by its initial
manufacture,

where for a switch-toggling episode at t to directly cause some state of the lamp at ty, it must not be
‘cancelled’ by someone toggling the lamp back off again in the time between t and to. In the context of L-1, it
follows from the description of the Thompson lamp scenario that, all else equal, the lamp will be off at 12.
Every switch-toggling that might directly cause the lamp to be on has been cancelled, in the relevant sense,
and by L-1, the lamp can only be on if some uncancelled switch-toggling caused it to be on.

Suppose next we were to add:

L-2
The lamp cannot be off unless it were directly caused to be off by someone toggling the switch, or by its
initial manufacture.

Given this, we could argue, in a way that exactly parallels the above, that the lamp must be on at 1. The
conjunction of the two principles thus leads to the prediction that the lamp must be both on and off at 1
o’clock—a contradiction.



